

Ahsanullah University of Science and Technology

Department of Electrical and Electronic Engineering

LABORATORY MANUAL

FOR

ELECTRICAL AND ELECTRONIC SESSIONAL COURSES

Student Name :

Student ID :

Course No. : EEE 4134

Course Title : VLSI-I Lab

For the students of

Department of Electrical and Electronic Engineering

4th Year, 1st Semester

 EEE 4134 || VLSI-I Laboratory

 Page 2 of 100

Table of Contents

Lab-1: Combinational Logic Circuit Design in Verilog HDL 3

Lab-2: Digital System Design Using Verilog HDL ... 18

Lab-3: Sequential System Design Using Verilog HDL .. 22

Lab-4: CMOS Inverter Design Using Cadence Virtuoso ... 27

Lab-5: Measuring Different Performance Parameters of a CMOS Inverter 39

Lab-6: DC Sweep and Parametric Sweep in Cadence Virtuoso 57

Lab-7: Custom Layout of an Inverter .. 63

Lab-8: Post Layout Verification .. 81

Lab-9: Schematic Driven Layout Design ... 87

Lab-10: Introduction to Hierarchical Layout Design ... 97

References and Acknowledgment .. 100

 EEE 4134 || VLSI-I Laboratory

 Page 3 of 100

Lab-1: Combinational Logic Circuit Design in Verilog HDL

Introduction

A hardware description language (HDL) is similar to a typical computer programming language except that an

HDL is used to describe hardware rather than a program to be executed on a computer. Two HDLs are IEEE

standards: Verilog HDL and VHDL (Very High Speed Integrated Circuit Hardware Description Language).

Verilog language can be used in several ways to model digital systems. In this lab, we will implement

combinational logic circuits using Gate level or structural modeling, Data flow modeling (DFM), and

Behavioral modeling styles of Verilog.

Structure of a Verilog Module

Example 01

Example 01 demonstrates the Verilog HDL code of a Half Adder using the Gate Level abstraction.

1

2

3

4

5

6

module Half_Adder(s,c,x,y);

input x,y;

output s,c;

xor s1(s,x,y);

and c1(c,x,y);

endmodule

Example 02

Example 02 demonstrates the Verilog HDL code of a Half Adder using the Data Flow modeling style.

1

2

3

4

5

6

module Half_Adder(s,c,x,y);

input x,y;

output s,c;

assign s=x^y;

assign c=x&y;

endmodule

 EEE 4134 || VLSI-I Laboratory

 Page 4 of 100

Example 03

Example 03 demonstrates the Verilog HDL code of a 2X1 multiplexer using the Gate Level abstraction.

1

2

3

4

5

6

7

8

9

module mux_2to1(s,Io,I1,Y);

input s,Io,I1;

output Y;

wire w1,w2,w3;

not g1(w1,s);

and g2(w2,Io,w1);

and g3(w3,s,I1);

or g4(Y,w2,w3);

endmodule

Example 04

Example 04 demonstrates the Verilog HDL code of a 2X1 multiplexer using the Data Flow modeling style.

1

2

3

4

5

module mux_2to1(s,Io,I1,Y);

input s,Io,I1;

output Y;

assign Y=(~s& Io)|(s&I1);

endmodule

Example 05

Example 02 demonstrates the Verilog HDL code of a 2X1 multiplexer using the Behavioral modeling

style.

1

2

3

4

5

6

7

8

9

10

11

12

13

module mux_2to1(s,Io,I1,Y);

input s,Io,I1;

output reg Y;

always@ (s,Io,I1) //if we use always @* The * operator will automatically identify all sensitive variables.

begin

 if(s==0)

 Y=Io;

 else if(s==1)

 Y=I1;

 else

 Y=0;

end

endmodule

 EEE 4134 || VLSI-I Laboratory

 Page 5 of 100

Student Task

1. Verify the functionality of Example-3 using the clock pulses shown in figure-a.

figure-a

2. Write a Verilog code to obtain the same logic circuit of figure-b in ‘RTL Viewer’ and verify the

functionality of the circuit using the clock pulses shown in figure-c.

figure-b

figure-c

 EEE 4134 || VLSI-I Laboratory

 Page 6 of 100

Installation of Quartus Prime
1. Download the Intel® Quartus® Prime Lite Edition Design Software Version 22.1.2 from the

following link

https://www.intel.com/content/www/us/en/software-kit/660907/intel-quartus-prime-lite-

edition-design-software-version-20-1-1-for-windows.html

2. Extract the downloaded file.

3. Run the setup.bat file.

4. During installation make sure the following components are selected.

https://www.intel.com/content/www/us/en/software-kit/660907/intel-quartus-prime-lite-
https://www.intel.com/content/www/us/en/software-kit/660907/intel-quartus-prime-lite-

 EEE 4134 || VLSI-I Laboratory

 Page 7 of 100

Simulating Verilog HDL using Quartus Prime

1. Find the following icon on your PC and run the software by double-clicking the icon.

2. For using the Quartus Prime very first time we need to locate the directory of ModelSim Altera.

For that execute Tool → Options → EDA Tool Options and give the proper location of ModelSim

Altera and click OK. Normally the location is

C:\intelFPGA_lite\20.1\modelsim_ase\win32aloem

or

C:\intelFPGA\20.1\modelsim_ase\win32aloem

3. The following window will pop up. Now click on the New project wizard.

 EEE 4134 || VLSI-I Laboratory

 Page 8 of 100

4. Click Next on the following window.

5. In the following window change the working directory of the project to your directory (e.g.

D:\150205022/Half_Adder) and give a name to the project as shown and click Next four times.

[Project name must be same as the top module]

 EEE 4134 || VLSI-I Laboratory

 Page 9 of 100

6. After clicking Next four times the following window will pop up then set the simulation tool as

“Questa Intel FPGA” , format as “Verilog HDL” and make sure the “Run gate-level simulation

automatically after compilation” check box is not checked in the EDA tool settings window.

After that click Next.

 EEE 4134 || VLSI-I Laboratory

 Page 10 of 100

7. The summary window will appear and click Finish.

8. Execute File → New. In the New window select the Verilog HDL file and click ok. The editor

window will appear.

9. In the editor window write the Verilog module of your design.

 EEE 4134 || VLSI-I Laboratory

 Page 11 of 100

10. Now click on the compilation icon for compiling the design. In this step, the software will ask you

to save the Verilog HDL file. Save it with the identical name of the project file.

11. After successful compilation you will get the following message. Ignore the warnings.

12. The RTL view of the Verilog module can be obtained in Quartus prime by executing Tools →

Netlist Viewers → RTL Viewer.

13. The RTL view of our design will be like the following figure.

 EEE 4134 || VLSI-I Laboratory

 Page 12 of 100

14. Now to launch ModelSim, execute Tool→ Run Simulation Tool → RTL Simulation.

15. The ModelSim will be launched, and the following window will open.

16. Now go to the Library window present on the left side of the ModelSim window and execute

rtl_work→ <double click on your project module name>

 EEE 4134 || VLSI-I Laboratory

 Page 13 of 100

17. The input and output variables defined in the Verilog will appear in the Objects window.

18. Now select all the input and output variables of the Objects window and by right-clicking on

your mouse execute Add Wave to place them in the Wave window.

19. All the input and output variables will be placed on the wave window and the wave window will

look like the following.

 EEE 4134 || VLSI-I Laboratory

 Page 14 of 100

20. Now apply clocks to each input variable. Right-clicking any input variable and from the popped-

up menu execute Modify → Clock.

21. The Define Clock window will appear. Set parameters as per your requirement keep in mind all

the units are in picoseconds by default.

22. After defining all the input clocks, to evaluate the outputs write run 100 ps on the Transcript of

ModelSim. Then the simulation will be performed for 100 ps.

[Give run length according to your requirement.]

Alternatively, we can run the wave output using the Run icon by typing the Run length

 EEE 4134 || VLSI-I Laboratory

 Page 15 of 100

23. The wave window will look like the following figure after simulation.

If you need to change the clock pulse you must reset all the clocks before changing clocks otherwise
the inputs and outputs will change after the previous run time which is not a convenient way to
represent the inputs and outputs. The command “restart” is used in the transcript for resetting all
the clocks. Alternatively, restart can be performed by executing Simulate → Restart

Showing Binary values on the Wave

Sometimes it is hard to verify the functionality of a digital system from the wave. For easy functional

verification, we can read the binary values from the wave of ModelSim by doing the following steps.

I. Select all the input and output variables on the clock and right-click on the mouse and

execute Radix → Binary.

II. After changing the Radix, change the Format type similarly by selecting all input and

output variables on the wave by right-clicking on the mouse and then executing Format

→ Literal.

III. Now on the wave, binary values will be displayed which can be easily analyzed.

 EEE 4134 || VLSI-I Laboratory

 Page 16 of 100

Changing Clock Unit

In step 21 it is mentioned that ModelSim’s default timing unit is picosecond. But in some cases, we may

need to define clocks in other units. Let us consider, that we need to define the period of a, b, and c as

10ms, 5ms, and 2.5ms respectively. Now define the clock a, b, and c as shown in the below figures.

To view the output for all the input combinations the run length should be equal to the maximum

period.

 EEE 4134 || VLSI-I Laboratory

 Page 17 of 100

As all the units are in milliseconds, for easy visualization we can change the time units of the wave grid

by executing Wave → Wave Preferences → Grid & Timeline → Time units → ms.

Now the ModelSim wave window will look like the following figure.

Similarly, for femtoseconds, nanoseconds, and microseconds, we can use fs, ns, and ms respectively

 EEE 4134 || VLSI-I Laboratory

 Page 18 of 100

Lab-2: Digital System Design Using Verilog HDL

Example 01

Example 01 demonstrates the Verilog HDL code of a full adder following the Hierarchical Modeling style.

In the design, a half-adder module is constructed from the predefined logic gates and then the half-

adder module is used twice to design the full adder.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

module Full_Adder(A,B,Cin,sum,carry); // Top module

input A,B,Cin;

output sum,carry;

wire s1,c1,c2;

Half_Adder sm1(s1,c1,A,B);

Half_Adder sm2(sum,c2,s1,Cin);

or o1(carry,c1,c2);

endmodule

module Half_Adder(s,c,x,y); // macro cell

input x,y;

output s,c;

xor s1(s,x,y); // predefined primitive or leaf cells

and c1(c,x,y);

endmodule

N.B. One module can be instantiated to another module without maintaining the I/O sequence

using the Name Wise Instantiation or Explicit method (.Exact_Port(Port_to_be_Assigned)).

Example 02

Example 02 demonstrates the Verilog HDL code of a 4 to 2 priority encoder with a valid bit.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

module p_encoder_4to2(D,Y,V);

input [3:0]D; //declaring variable for input

output reg [1:0]Y; //declaring variable for output

output reg V; //declaring the variable for valid bit

always@ *

begin

 casex(D)

 4'b0001:

 begin

 Y=2'b00; V=1;

 end

 4'b001x:

 begin

 Y=2'b01; V=1;

 end

 EEE 4134 || VLSI-I Laboratory

 Page 19 of 100

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

 4'b01xx:

 begin

 Y=2'b10; V=1;

 end

 4'b1xxx:

 begin

 Y=2'b11; V=1;

 end

 default:

 begin

 Y=2'bx; V=0;

 end

 endcase

end

endmodule

Example 03

Example 03 demonstrates the Verilog HDL code of a 2 to 4 decoder.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

module decoder_2to4(s,e,y);

input [1:0] s;

input e;

output reg [3:0]y;

integer k;

always@ (s,e)

begin

 for (k=0;k<=3;k=k+1)

 begin

 if ((s==k) && (e==1))

 y[k]=1;

 else

 y[k]=0;

 end

end

endmodule

 EEE 4134 || VLSI-I Laboratory

 Page 20 of 100

Example 04

Example 04 demonstrates the Verilog HDL code of a 3-bit arithmetic logic unit that works according to

the function table mentioned in Table-1

Block representation of the ALU of Example 04

Table-1

Operation Code Function

00 Binary sum of A and B

01 Adds 1 with B

10 2s complement of A

11 Bitwise XOR operation between A and B

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

module ALU_4bit(A,B,F,opcode);

input [2:0]A, B;

input [1:0]opcode;

output reg [3:0]F;

always@ (*)

begin

case(opcode)

 2'b00:F=A+B;

 2'b01:F=B+1;

 2'b10: F=-A;

 2'b11: F=A^B;

 default:F=0;

endcase

end

endmodule

 EEE 4134 || VLSI-I Laboratory

 Page 21 of 100

Student Task:

1. Write a Verilog code to implement the system shown in figure-a using two submodules and a

top module. Hence verify the output X and Y with the clock pulse shown in figure-b.

figure-a figure-b

2. Write a Verilog code to implement a 4x1 Multiplexer with the minimum number of 2x1

Multiplexers.

3. Write a Verilog code to implement a BCD adder using behavioral statements.

4. Write a Verilog code to implement a 4-bit magnitude comparator.

5. Write a Verilog code to implement a 4-bit ripple carry adder using full adders.

 EEE 4134 || VLSI-I Laboratory

 Page 22 of 100

Lab-3: Sequential System Design Using Verilog HDL

Example 01
Example 01 demonstrates the Verilog HDL code of a SR Latch

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

module sr_latch(s,r,Q,clk);

input clk,s,r;

output reg Q;

always@ *

begin

if(clk==1)

 begin

 case ({s,r})

 2'b00:Q=Q;

 2'b01:Q=0;

 2'b10:Q=1;

 default:Q=1'bx;

 endcase

 end

end

endmodule

Example 02
Example 02 demonstrates the Verilog HDL code of a JK Latch.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

module jk_latch(J,K,Q,clk);

input clk,J,K;

output reg Q;

always@ (*)

begin

 if(clk==1)

 begin

 case({J,K})

 2'b00:Q=Q;

 2'b01:Q=0;

 2'b10:Q=1;

 2'b11:Q=~Q;

 default:Q=1'bx;

 endcase

 end

end

endmodule

 EEE 4134 || VLSI-I Laboratory

 Page 23 of 100

Example 03
Example 03 demonstrates the Verilog HDL code of a D Latch using behavioral statements.

1

2

3

4

5

6

7

8

9

module D_latch(D,Q,clk);

input clk,D;

output reg Q;

always@ (*)

begin

if (clk==1)

 Q=D;

end

endmodule

Example 04
Example 04 demonstrates the Verilog HDL code of a T Latch using behavioral statements.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

module T_latch(T,Q,clk);

input T,clk;

output reg Q;

always@ (*)

begin

 if (clk==1)

 begin

 if(T==0)

 Q=Q;

 else if(T==1)

 Q=~Q;

 end

end

endmodule

Example 05
Example 05 demonstrates the Verilog HDL code of a positive edge triggered D flip-flop.

1

2

3

4

5

6

module D_FF(clk, D,Q);

input D,clk;

output reg Q;

always@(posedge clk)

 Q=D;

endmodule

 EEE 4134 || VLSI-I Laboratory

 Page 24 of 100

Example 06
Example 06 demonstrates the Verilog HDL code of a positive edge triggered D flip-flop with synchronous

set and reset.

1

2

3

4

5

6

7

8

9

10

11

12

13

module D_FF(clk, rst, set, D, Q);

input D,set,rst,clk;

output reg Q;

always@ (posedge clk)

begin

 if(rst==1)

 Q=0;

 else if(set==1)

 Q=1;

 else

 Q=D;

end

endmodule

Example 07
Example 07 demonstrates the Verilog HDL code of a positive edge triggered D flip-flop with

asynchronous reset.

1

2

3

4

5

6

7

8

9

10

11

12

13

module D_FF(clk, rst, set, D, Q);

input D,set,rst,clk;

output reg Q;

always@ (posedge clk, posedge rst)

begin

 if(rst==1)

 Q=0;

 else if(set==1)

 Q=1;

 else

 Q=D;

end

endmodule

Example 08

figure-a

 EEE 4134 || VLSI-I Laboratory

 Page 25 of 100

Example 08 demonstrates the Verilog HDL code of the RTL view shown in figure-a.

1

2

3

4

5

6

7

8

module rtl1(T,clk,Q);

input T,clk;

output reg Q;

always@(posedge clk)

begin

 Q<=(T&(~Q))|(Q&(~T));

end

endmodule

Example 09
Example 09 demonstrates the Verilog HDL code of a 2-bit up counter with synchronous enable.

1

2

3

4

5

6

7

8

9

module up_count(clk,E,Q);

input clk,E;

output reg [1:0]Q;

always@(posedge clk)

if(!E)

 Q=0;

else

 Q=Q+1;

endmodule

Example 10
Example 10 demonstrates the Verilog HDL code of a 4-bit shift registrar.

1

2

3

4

5

6

7

8

9

10

11

module shift_reg(w,clk,Q);

input w,clk;

output reg [3:0]Q;

always@(posedge clk)

begin

 Q[3]<=w;

 Q[2]<=Q[3];

 Q[1]<=Q[2];

 Q[0]<=Q[1];

end

endmodule

 EEE 4134 || VLSI-I Laboratory

 Page 26 of 100

Student Task

1. Verify the functionality of Example-09 using the clock pulses shown in figure-a.

figure-a

2. Write a Verilog code to obtain the same logic circuit of figure-b in ‘RTL Viewer’.

figure-b

3. What is the difference between the outputs of the two modules (test1 and test2) shown below?

 module test1(a,b,y);

input a,b;

output reg y;

always@(*)

begin

 y=a;

 y=y|b;

 y=y^b;

end

endmodule

 1

2

3

4

5

6

7

8

9

10

module test2(a,b,y);

input a,b;

output reg y;

always@(*)

begin

 y<=a;

 y<=y|b;

 y<=y^b;

end

endmodule

4. Write a Verilog code to design a BCD counter.

5. Write Verilog code for a universal shift register which can shift left/right and can load data both

in parallel mode and serial mode.

6. Write the Verilog code for a logic circuit which counts to 3 if selection input (composed of 2 bits)

𝑆1𝑆0 = 01, counts to 7 if 𝑆1𝑆0 = 10, counts to 15 if 𝑆1𝑆0 = 11. If 𝑆1𝑆0 = 00, then it halts counting.

Use positive edge-triggered counter.

 EEE 4134 || VLSI-I Laboratory

 Page 27 of 100

Lab-4: CMOS Inverter Design Using Cadence Virtuoso

Objectives:

• To learn how to logging into the Cadence Virtuoso.

• To learn how to draw schematic of basic logic gates in Cadence Virtuoso.

• To learn how to create symbol view from schematic view

Steps to Login into the server

Start XLaunch

Start Putty

Open VLSI_LAB session

Login to server using the

following credentials

User Name: eee_20200105320

Password: 20200105320

Type the commands one by one

and press Enter:

 csh

 source cshrc.txt

 virtuoso &

The detailed instructions are given below

1. Find the Desktop shortcut icon for XLaunch. Double-click on it. Click Next, Next, Next,

Finish (in that order) in the windows that pop up one after another.

After it starts, you will see the Xming icon at the bottom right corner of your Desktop

screen.

2. Find the icon for Putty. Double click on it to open it. ‘Putty Configuration’ window will

pop-up

 EEE 4134 || VLSI-I Laboratory

 Page 28 of 100

3. Select VLSI_LAB under the ‘Saved Sessions’ category. Click Load and then click Open.

4. Now you will see a Terminal window which prompts you for login.

5. Log in to your workstation using your username and password. Your username will be

eee_<student id> and your password will be your student ID. When you are typing

your password, the command window will not display the characters you type in, so

make sure you are typing the right password. After logging in to your account, the

terminal window should look like the following:

6. Type csh and press the ‘Enter’ key.

7. Then type source cshrc_q and press the ‘Enter’ key. The following message will be

displayed in the Terminal window: Welcome to Cadence Tools That means you can use

Cadence tools now.

 EEE 4134 || VLSI-I Laboratory

 Page 29 of 100

8. Then type virtuoso & in the command prompt as shown below.

9. Virtuoso® Command Interpreter Window (CIW) appears at the bottom of the screen.

From the CIW menus, all Cadence main tools, online help and options can be accessed.

In the window area, all kind of messages (info, errors, warnings, etc) generated by the

different Cadence tools appear. You can also introduce commands.

 EEE 4134 || VLSI-I Laboratory

 Page 30 of 100

Creating a Schematic

1. In the Command Interpreter Window (CIW), execute File→New→Cellview. Set up the ‘New

File’ form as follows:

Library: mylib, Cell: inverter, View: schematic, Type: schematic, Application: Open with:

Schematics L

A blank schematic window for the inverter design appears.

 EEE 4134 || VLSI-I Laboratory

 Page 31 of 100

2. To create an instance, you can execute Create→ Instance in Virtuoso schematic editor

window or simply use shortcut key “i”. The following window will appear. Click Browse to select

a library component.

3. Library Browser window will show up. Choose Library: gpdk045, Cell: nmos1v, View: symbol.

(Note that while you are doing this, the ‘Add Instance’ form is getting updated as well).

 EEE 4134 || VLSI-I Laboratory

 Page 32 of 100

4. Make sure that the view name field in the form is set to symbol. After you complete the

form, move your cursor to the schematic window and click left button of mouse to place the

component. After entering the components, click Cancel in the Create Instance form or press

Esc keeping your cursor in the schematic window.

Similarly, add pmos1v cell.

If you place component in the wrong location, press ‘m’ on keyboard, click once on the

component to select it and move the mouse to move the component to your desired location.

5. Now we can adjust the sizes of the transistors by editing instance properties. Left click on the

NMOS to select the component. Then, press “q” to modify its properties, or in schematic editor

window, execute Edit → Properties → Object.

You will update the Library Name, Cell Name, and the property values given in the table below

as you place each component. The inverter design contains the following cells from the

following libraries.

For example, while modifying the transistor width for PMOS, set Total Width to 240n, and then

press ‘Tab’ key and the Finger Width will be set to the same value. Click OK.

 EEE 4134 || VLSI-I Laboratory

 Page 33 of 100

To deselect any object, press keyboard command “Ctrl+d”.

Next, instantiate power nets (cell vdd and gnd from analogLib library).

 EEE 4134 || VLSI-I Laboratory

 Page 34 of 100

6. Execute Create→ Pin or press ‘p’ on keyboard. ‘Add Pin’ form will appear. Enter the name of

the pin and Direction of the pin. Add all the pins (in, out) to the schematic. For an inverter, gate

input pin (e.g. in) is the input and output pin (e.g. out) at the common node between drains of

NMOS and PMOS is output of the inverter. So, select Direction property as input for in, and

output for out.

 EEE 4134 || VLSI-I Laboratory

 Page 35 of 100

7. Use Add→ Wire menu or simply press ‘w’ key while staying on the schematic editor to enter

wiring mode / Esc to exit. Click and release left button of mouse to start wire connections and

click again at another point to draw wire connection.

It is a good practice to periodically save your work by clicking on Check and Save button (the

checkmark button just below the Tools menu). You can also save your work from the drop-

down menu File→Save.

The final schematic looks like the following one:

8. Click Check and Save.

9. Check CIW for errors or warnings. Some licence warnings may be ignored. If there are no

error or design warning, you should see the following message:

 EEE 4134 || VLSI-I Laboratory

 Page 36 of 100

Symbol Creation

We will create a symbol for your inverter design so that we can use this symbol view for the

schematic in a hierarchical design.

1. In the schematic editor window for inverter, execute Create→Cellview→From Cellview.

‘Cellview from cellview’ window appears. Click OK.

2. In the ‘Symbol Generation Options’ window, you can choose the location of the pins.

3. Click OK on the ‘Symbol Generation Options’ window and the Symbol Editor window will

open.

 EEE 4134 || VLSI-I Laboratory

 Page 37 of 100

3. Click Delete icon in the symbol window, delete the outer red rectangle and green rectangle.

4. Execute Create →Shape→polygon, and draw a shape similar to triangle. After creating the

triangle, press Esc key.

5. Execute Create→Shape→Circle to make a circle at the end of the triangle. You can move the

pin names according to the location.

6. Execute Create→Selection Box. In the ‘Add Selection Box’ form, click ‘Automatic’. A new red

selection box is automatically added.

7. After creating symbol, click on the save icon in the symbol editor window to save the symbol.

In the symbol editor window, execute File→Check and Save. Then close the symbol editor

window.

 EEE 4134 || VLSI-I Laboratory

 Page 38 of 100

Appendix: Cadence Virtuoso® Schematic Editor L Shortcuts

Shortcut key Tasks performed

w Add a wire

i Add an instance

p Add a pin

l Add label to a wire

e Display options

q Select an object and press q to open ‘Edit

Object Property’ dialogue box

[Zoom out

] Zoom in

c Copy

m Move

u Undo

Shift+u Redo

f Fit the entire schematic in the window

Student Task

7. Implement 3 input NOR and NAND gate using CMOS logic family

 EEE 4134 || VLSI-I Laboratory

 Page 39 of 100

Lab-5: Measuring Different Performance Parameters of a

CMOS Inverter

Objectives:

• To verify the functionality through transient simulation.

• To measure power dissipation, propagation delay, rise time and fall time of logic gates.

• To learn about process corners and their effects on delay and power dissipation

Functional Verification
The following flowchart shows the steps to be executed to simulate a design using ADE

Explorer:

1. To simulate the schematic of inverter first open the schematic of inverter, execute File→

Open in CIW. In the ‘Open File’ window, select the inverter schematic from the list. Click OK.

 EEE 4134 || VLSI-I Laboratory

 Page 40 of 100

2. In the Schematic editor window, execute Launch→ ADE Explorer. The following window may

appear.

The following window may appear. Click Always.

Analog Design Environment (ADE) Explorer window will appear.

 EEE 4134 || VLSI-I Laboratory

 Page 41 of 100

6. Set up the model libraries by executing Setup→Model Libraries. ‘Model Library Setup’

Window will appear:

7. Click twice on the file name given under Global Model Files. An ash coloured button will

appear.

Click on the button. ‘Choose Model File’ window will appear.

8. Select gpdk045_mos.scs from the list. Click Open.

 EEE 4134 || VLSI-I Laboratory

 Page 42 of 100

In this model file, there are models to simulate various corners like fast-fast (FF), fast-slow (FS),

typical-typical (TT) etc. These are called process corners, depending on the speed of MOS

transistors (NMOS and PMOS). Refer to the following figure for the definition of process

corners:

Slow Fast

 nMOS

p

M
O

S

S
lo

w

F

as
t

SS

SF

FS

FF

TT

We will choose the section typical from the Section scroll bar and select the section ‘tt’. These

will enable us to use the TT models of the 1.2 V MOS transistors. Only one Global Model File

will be defined. Uncheck or delete any other model files that appear. Click OK.

9. Now choose the analysis to be done from Analyses→Choose. Select transient (tran)

analysis to be done. Provide a reasonable value for ‘stop time’ to observe few periods of

signals. (e.g. Analysis: tran, Stop Time: 100n, Accuracy Defaults: moderate). Click OK.

 EEE 4134 || VLSI-I Laboratory

 Page 43 of 100

8. Now execute Setup→ Stimuli to assign signals to pins of the inverter.

8. In ‘Stimuli Assignment’ window, select Globals. Now you can see global power net vdd!.

Click on Authoring → ON.

Write vdd in the box and select dc under the drop down menu. Put a value of 1 on the DC

voltage box. The filled up form for ‘vdd!’ will look like the one below. Click Apply (clicking OK

will close the window and it will have to be reopened to setup inputs).

 EEE 4134 || VLSI-I Laboratory

 Page 44 of 100

9. Select Inputs. For input pin ‘in’, we have to set a pulse waveform. The following figure shows

the definition of pulse parameters:

Delay

Time

Voltage

Time

Rise

Time
Pulse Width Fall

Time

Period Period

Voltage1

Voltage2

For setting signal to input pin ‘in’, select Pins in Stimuli Assignment window. Click on Authoring

→ ON, write in in the box and select ‘pulse’ under the drop down menu. Parameters for pulse

source will be as follows: Voltage1 = 0V, Voltage2 = 1V, Period = 40n, Delay time = 3n, Rise

time = 3n, Fall time = 3n, Pulse width = 20n. Click Apply and then click OK. (Delay, Rise time

and Fall time can also be set at ps ranges for sharp transitions).

 EEE 4134 || VLSI-I Laboratory

 Page 45 of 100

10. Now Click on Authoring → OFF. Then select the pin vdd in the Stimuli Authoring window.

Go to Pin Assignments → Right Click on vdd!→ Assign Stimuli to selected Pin.

Do the same for other pins that has been defined previously.

 EEE 4134 || VLSI-I Laboratory

 Page 46 of 100

10. Select the output to be plotted by executing Outputs→To be plotted→Select on Design in

the ADE window. Schematic editor window will pop up, select ‘out’ and ‘in’ by clicking on the

pins/terminals or selecting from the list on the left hand side as shown in the figure below.

When you select them, you will see colours being assigned to these pins.

 EEE 4134 || VLSI-I Laboratory

 Page 47 of 100

11. Your Analog Design Environment window should now look like the following:

12. Now run the simulation by executing Simulation→Netlist and Run in the ADE window. The

following window may appear. Click on Do not show again→ Close.

 EEE 4134 || VLSI-I Laboratory

 Page 48 of 100

The simulation will run and the VIVA Graph will appear in window as shown below. Click on the

marked icon shown in figure.

The output will appear in virtuoso visualization window as shown below.

13. Finally, we are going to separate the plots into two sub-graphs. Click on the following icon

for splitting graphs.

 EEE 4134 || VLSI-I Laboratory

 Page 49 of 100

The final plot should look like the one shown below:

Measuring average power using Waveform calculator

We will compute the average power consumed in a circuit for the duration of transient

simulation window.

1. To do this, make sure that before running simulation you select the Outputs→Save All

option in ADE L window. ‘Save Options’ window will appear. Under ‘Select power signals to

output (pwr)’ option, put a tick mark in all option. Click OK.

 EEE 4134 || VLSI-I Laboratory

 Page 50 of 100

2. Then simulate the circuit as usual, by executing Simulation→Netlist and Run.

Execute Tools→ Result Browser in ADE L window. ‘Result Browser’ window will appear to the

left side in ‘Virtuoso Analysis and Visualization XL’ window. Double-click on tran. From the

signals list,

3. Now double-click on :pwr

4. The waveform display window will show the “:pwr” (the instantaneous power consumed by

the whole circuit) along with ‘in’ and ‘out’ signals.

 EEE 4134 || VLSI-I Laboratory

 Page 51 of 100

5. Now, open Waveform calculator window. The calculator window appears. Make sure the

“Wave” and “Clip” options are selected.

6. Now switch back to the waveform window and left click the mouse once on the power

waveform. Then switch back to the calculator window. The buffer window should be filled in as

follows:

 EEE 4134 || VLSI-I Laboratory

 Page 52 of 100

7. Now select ‘average’ from ‘Special Functions’ Menu and click apply.

8. The buffer will now look like the following one:

9. Click on Evaluate the buffer icon and the average power dissipation in that time window will

be displayed (about 1.838 W in this example).

 EEE 4134 || VLSI-I Laboratory

 Page 53 of 100

Measuring propagation delay using Waveform calculator

Waveform calculator can be used to perform many different measurements and

transformations on the waveforms displayed in the waveform window. This includes –

computing the average of a waveform (e.g. power) over the entire length of the simulation or in

a given period of time, finding the propagation delay of between input and output signals, or

addition/subtraction/multiplication/division of waveforms, etc.

1. Execute Tools→Calculator in Virtuoso Visualization & Analysis XL window. ‘Virtuoso

Visualization & Analysis XL calculator’ window will pop-up:

2. Select ‘vt’. Go to Schematic editor window and click on input node ‘in’. An expression (e.g.

VT(“/in”)) will appear. Copy the expression.

 EEE 4134 || VLSI-I Laboratory

 Page 54 of 100

3. In the Function Panel, select ‘Special functions’ and select ‘delay’.

4. The following window will appear. Put the expression previously obtained in the field

‘Signal1’. Do the same for output signal ‘out’ to fill in the field ‘Signal2’.

Fill up the rest of the form as follows:

 EEE 4134 || VLSI-I Laboratory

 Page 55 of 100

5.Click OK. The following expression should appear:

6. Click on Evaluate the buffer icon.

The propagation delay (in seconds) will be displayed in the window.

 EEE 4134 || VLSI-I Laboratory

 Page 56 of 100

Measuring rise time and fall time using Waveform calculator

1. Open the ‘delay’ function window under Waveform calculator in the same way that you

followed for propagation delay measurement. This time both Signal1 and Signal2 will be

VT(“/out”).

2. Threshold value 1 and 2 should be 0.12 (10% of 1.2 V supply) and 1.08 (90% of 1.2 V supply)

respectively for 10% to 90% rise time calculation. These values should be swapped for fall time

calculation.

3. For rise time/fall time calculation, both the Edge numbers must be the same.

4. The Edge types should be rising for rise time calculation and falling for fall time calculation.

Example: Rise time calculation of rising edge 2 for an inverter:

5. Click OK after filling in the form as shown above. The following expression should appear:

Student Task

1. Explain the nature of power consumption curve.

2. Perform SS, FF, SF and FS process corner simulations and compare the power

consumption and propagation delays.

 EEE 4134 || VLSI-I Laboratory

 Page 57 of 100

Lab-6: DC Sweep and Parametric Sweep in Cadence Virtuoso

Objectives:

• To learn how to perform DC sweep and parametric simulation.

• To learn the voltage transfer characteristics of inverter.

Obtain the voltage transfer characteristics of inverter

We will perform both DC and parametric simulation at the same time on inverter schematic.

We will obtain the transfer characteristic curve (TCC) of inverter from DC simulation and by

varying the width of the PMOS transistor; we will observe its effect on transfer characteristics.

1. Open Cadence Virtuoso and create a new schematic by executing, File→ New→ Cellview.

Set up the ‘New File’ in the Command Interpreter Window (CIW)

Library: mylib, Cell: inverter2, View: schematic, Type: schematic, Application: Open with:

Schematics L

 EEE 4134 || VLSI-I Laboratory

 Page 58 of 100

2. In the schematic window design the following schematic.

Here the V0 and V1 is a vdc type source placed from the library analogLib. The V0 source is

connected between ‘in’ and ‘gnd!’ and the V1 source is connected between source of PMOS and

gnd. Now, select the V0 source and click ‘q’ , the ‘Edit object properties’ window will open.

Place vin under ‘DC voltage’ field. Similarly, for the V1 source place 1 v as shown below.

For the source V0 For the source V1

 EEE 4134 || VLSI-I Laboratory

 Page 59 of 100

3. To sweep the width of PMOS transistor select the PMOS transistor in the schematic editor

window, click ‘q’ and ‘Edit object properties’ window will open. Place w under ‘Total Width’

and press tab on keyboard. The ‘Finger Width’ field will be automatically changed as follows:

4. Execute Launch→ ADE Explorer and setup Model Library to gpdk045_mos.scs and section to

TT similar to the way you did in Lab 1.

5. Execute Variables→ Copy from Cellview.

6. You will see ‘w’ and ‘vin’ appear in the ‘Design Variables’ window. Click on ‘w’ field, put a

default value of 120n.. Similarly click on ‘vin’ field, put a default value of 1.

7. Execute Analyses → Choose and in the ‘Choosing Analyses’ form, select dc. Under ‘Sweep

Variable’, select ‘Design Variable’ and click on ‘Select design variable’. Select ‘vin’ and click OK.

 EEE 4134 || VLSI-I Laboratory

 Page 60 of 100

8. Under ‘sweep range’, select ‘start-stop’ and put a start value of 0.1 and a stop value of 1.

Select ‘Sweep type’ to be ‘linear’ and ‘Step size’ to be 0.01. Click OK.

Your Window Should look like this.

9. Execute Outputs → To be plotted and select ‘out’ pin on the schematic.

Select Netlist and run to simulate a single TCC for the given default PMOS width of 120nm.

10. For Parametric Analysis, Click on, “w” under Design variable of the ADE Explorer window.

 EEE 4134 || VLSI-I Laboratory

 Page 61 of 100

 11. Click on the 3 dot icon. The following window will appear.

12. Click on “From/To” From the drop down menu. Choose Step type as liner. Put From: 120n

and To: 360n. and put Step Size: 120n. Click on Ok. Now run the simulation by executing

Simulation → Netlist and Run.The output should look like following

These transfer characteristics can be further explored to find Noise margin, and inversion

voltage for different widths of PMOS.

13. Save the state of the ADE Explorer window.

 EEE 4134 || VLSI-I Laboratory

 Page 62 of 100

Student Task

1. Show the effect of changing NMOS width on the TCC of an inverter.

2. Perform a parametric analysis in transient simulation to show the effect of changing the PMOS

width on the propagation delay. You are expected to obtain a similar graph as shown below:

Setup necessary settings for the delay function in the waveform calculator. Click OK and

click on ‘Evaluate the buffer and display the results in a table’ icon.
The results should be displayed in a table like below:

3. Some of the propagation delays are negative. Explain why?

4. Explain the change in propagation delay with the change in PMOS transistor width.

5. Obtain the output characteristic curve (ID vs VDS) and transfer characteristic curve (ID vs VGS) of

NMOS and PMOS.

 EEE 4134 || VLSI-I Laboratory

 Page 63 of 100

Lab-7: Custom Layout of an Inverter

Objectives:

● To create a layout view of the basic inverter circuit from scratch in Virtuoso Layout
Editor

● To design the layout keeping basic design rules in mind
● To design cell layout of a constant height for use in hierarchical design

Introduction to Layout, DRC and LVS

Layout is representation of a circuit in terms of planar geometric shapes (e.g. rectangles,

polygons) showing the patterns of metal, polysilicon, oxide, or diffusion layers that make up the

components (resistors, inductors, capacitors, transistors) of the integrated circuit.

When using a standard process (e.g. 45nm, 90nm or 180nm process available in our lab), the

behaviour of the final integrated circuit depends significantly on the positions and

interconnections of the geometric shapes due to parasitic resistances and capacitances

contributed by them. While designing a layout, designer must keep in mind performance (e.g.

power-delay product) and size (area occupied by the chip) criterion.

While designing digital circuits, one usually follows an ASIC design flow, where, the height of

standard cells that are used is the same throughout the cell library, but their widths must vary

according to their logical functions and drive strengths. The following figure shows a

generalized standard cell height concept:

Although we will follow a full-custom IC design flow, we will maintain same cell height

throughout our cell library.

The generated layout must pass a series of checks in a process known as physical verification.

The most common checks in this verification process are:

● Design Rule Checking (DRC)

● Layout Versus Schematic (LVS) checking

● Parasitic extraction and post-layout simulation

 EEE 4134 || VLSI-I Laboratory

 Page 64 of 100

Design Rule Check (DRC):

Design Rule Checking (DRC) is the process that determines whether the designed layout of a

circuit satisfies a rules specified by the process being used.

Design Rules are a series of rules (e.g. area, width, overlap, enclosure, extension, spacing)

provided by semiconductor manufacturers which are specific to a particular semiconductor

manufacturing process. Design rules specify certain geometric and connectivity restrictions to

ensure that the process can fabricate the device properly.

Layout versus Schematic (LVS) Check:

The Layout Versus Schematic (LVS) is the verification step to determine whether a

particular integrated circuit layout corresponds to the original schematic or circuit diagram of

the design. A successful Design rule check (DRC) ensures that the layout conforms to the rules

designed/required for faultless fabrication. However, it does not guarantee if it really

represents the circuit we desire to fabricate. This is why an LVS check is used.

Layout design using Virtuoso Layout Suite XL Editor

1. Invoke Virtuoso Layout Suite XL Editor from the CIW by executing File New Cellview. The

‘New File’ form appears. Fill it in as shown in the figure below:

Cell: inverter, View: layout. Click OK.

 EEE 4134 || VLSI-I Laboratory

 Page 65 of 100

2. Click ‘Always’ if the following window appears before Layout window appears.

The following window of Virtuoso Layout Suite XL Editor will appear.

On the left side of the window, you will find a panel called ‘Layers’. This panel is divided in three

main categories which are: layer color, layer name and layer purpose. The details are described

in the table below:

Color Matches the color in the Editing window. Each layer has its own color and pattern.

Each layer has two colors associated with it: a fill color and an outline color. These

colors can be changed to fit your taste by editing the technology file.

Name The type of layer (Nwell, Oxide, Poly, Metal1, etc)

Purpose In gpdk045 the only purpose classifications are: drw = drawing, slot = slot

Drawing is used in layout, slot is used to create a hole for metal stress relief

Verify that the layers display corresponds to the gpdk045layers shown in the GPDK 90 nm

Mixed Signal Process Specification manual.

3. Before starting to design layout, you need to set the layout display configuration. Execute the

following in the Virtuoso Layout Editor: Options→Display or press ‘e’ on keyboard. Configure

the form as shown in the figure below: You have to set the following parameters only:

 EEE 4134 || VLSI-I Laboratory

 Page 66 of 100

Minor spacing 0.001

Major spacing 0.01

X snap spacing 0.005

Y snap spacing 0.005

Display Levels: Stop 10

4. Now we are going to build the layout of the inverter. An inverter has an NMOS and a PMOS

transistor. First we will build an NMOS transistor.

Layout of NMOS inverter consists of oxide, Nimp, Cont and Poly layers. Study the rules of these

layers and calculate the minimum size of the Poly, Cont, Oxide and Nimp layer to create an

NMOS transistor.

0.00

1

0.01

0.00

5

0.00

5

 EEE 4134 || VLSI-I Laboratory

 Page 67 of 100

The rules related to the NMOS transistor can be summarised as follows:

Contact size 0.06 m × 0.06 m (Fixed)

Poly width (Minimum) 0.045 m (Fixed MOS gate length)

Contact to poly spacing (Minimum) 0.05 m

Contact to oxide enclosure (Minimum) 0.03 m

Poly/Nimp extending from oxide (Minimum) 0.1 m (gate side enclosure)

Nimpenclosing oxide (Minimum) 0.1 m (enclosure other than gate sides)

Minimum Metal 1 width 0.06 m

Maximum Metal 1 width 6 m

Minimum Metal 1 to Contact enclosure 0.03 m (on at least two opposite sides)

The following figure illustrates some of the design rules mentioned above:

Now study the PMOS transistor structure in the GPDK 45 nm Mixed Signal Process Spec. The

PMOS transistor consists of Oxide, Poly, Pimp, Cont and Nwell layer. Study the rules of these

layers and calculate the minimum size of Poly, Cont, Oxide, Pimp and Nwell layer to create a

PMOS transistor. The rules related to PMOS are same as NMOS except the there is an

additional layer, the Nwell, whose rules are as follows:

Minimum Nwell width 0.3 m

Minimum Nwell spacing to Nwell (same potential) 0.3 m

Minimum Nwell spacing to Nwell (different potential) 0.6 m

Minimum Nwell spacing to N+ active area 0.16 m

Minimum Nwell spacing to P+ active area 0.16 m

Minimum Nwell enclosure to P+ active area 0.06 m

Minimum Nwell enclosure to N+ active area 0.06 m

Minimum N+ Active Area to P+ Active Area Spacing 0.1 m

 EEE 4134 || VLSI-I Laboratory

 Page 68 of 100

Now we start building the NMOS and PMOS transistor layout. Look at the LSW and find the

current drawing layer.

5. Click on the following icon in Virtuoso Layout Suite XL Editor window so that it notifies you

anytime you make a violation of any design rule. When clicked, it will show ‘DRD Notify ON’.

DRD stands for Design Rule Driven.

6. Select ‘Cont (drw)’ (contact) layer from the ‘Layers’ panel and draw a rectangle of ‘Cont

(drw)’ layer using Create Shape Rectangle or simple pressing ‘r’. Press ‘Esc’ to stop ‘create

rectangle’ tool. In gpdk045 technology, Cont layers must be of dimension 0.06 m x 0.06 m.

So, if your rectangle is not of that dimension, click on the rectangle, press ‘q’. In the following

window, check if the criterion has been met and change ‘Width/Height’ if required.

Contact to poly spacing must be 0.05 m in this technology and the channel length of

NMOS/PMOS in our design is 0.045 m. So, we need a minimum space of 0.145 m between

the contacts at source and drain.

7. Press ‘k’ to invoke the ‘ruler’ tool. Use it to measure lengths whenever needed. To copy,

press ‘c’. After placing two contacts, the layout looks like this:

 EEE 4134 || VLSI-I Laboratory

 Page 69 of 100

8. Now, contact to oxide spacing is minimum 0.03 m. So, draw a rectangle of ‘Oxide (drw)’

layer so that it covers both the contacts and extends from each side by 0.03 m.

While drawing this, you will see Design rule violations when they are committed.

9. After drawing oxide layer, the layout should look like this:

10. Now we will draw ‘Nimp (drw)’ layer, which must extend from the oxide layer by a

minimum of 0.1 m. First, draw a rectangle and then extend it to meet design rules. Use stretch

tool by pressing ‘s’. Layout will look like the following:

11. Now, copy it and create another copy of all these layers by selecting all and pressing ‘c’.

 EEE 4134 || VLSI-I Laboratory

 Page 70 of 100

12. Click on the ‘Nimp (drw)’ layer of the copy in the upper portion of the layout and press ‘q’

to edit properties. From ‘Edit Rectangle Properties’ window, select ‘Pimp (drw)’ layer under

‘Layer’ option. Click OK.

13. With more metal layers available in today’s silicon processes, using the routing approach,

such as first metal traverse vertically and second metal traverse horizontally, would be

advantageous in standar cell physical design. Using this method, the second layer (e.g. Metal2)

can be used for power and ground routing over internal standard cell transistors. In standard

cell layout, it is preferable to use firt conducting layer, such as Metal1, as much as possible to

make internal connections of NMOS and PMOS transitors within the cell. If there is a nedd to

use other conducting layers, such as, Metal2, use of such layers must be kept to a minimum. It

is desired to use first routing (e.g. Metal1) layer for standard cell ports.

Our cells will have a height of 0.32 m. Place the two parts (NMOS and PMOS) 1 m apart, and

create a ruler so that the cell height can be checked whenever needed and the separation

between the NMOS and PMOS can be maintained properly. Now, the layout will look like the

following:

 EEE 4134 || VLSI-I Laboratory

 Page 71 of 100

 EEE 4134 || VLSI-I Laboratory

 Page 72 of 100

14. Next, draw a ‘Poly (drw)’ path by selecting ‘Poly’ layer from the ‘Layers’ panel and pressing

‘p’ to invoke ‘create path’ tool. This layer must be of 0.045 m in width and in between the two

contacts, extending from the oxide layer by 0.1 m (at least, on both sides). After placing the

‘poly’ gate, the layout will look like the following one:

15. Now that you know most of the shortcuts and layers, draw contact for body terminals for

NMOS and PMOS. These portions should consist of Cont, Oxide and Nimp (for body of PMOS) or

Pimp (for body of NMOS). Check DRD notifications for design rule violations. The following

figure shows a Psubstrate and an Nwell contact.

 EEE 4134 || VLSI-I Laboratory

 Page 73 of 100

16. Connect the Drain regions of the NMOS and PMOS. Also connect the source of both MOS’s

to respective body terminals using ‘Metal1 (drw)’ layer. Connect the drains of the MOS’s using

‘Metal1 (drw)’ layer.

17. PMOS should be in ‘Nwell (drw)’. So draw an ‘Nwell (drw)’ rectangle surrounding both the

PMOS and the body contact for PMOS. The layout will look like the following:

 EEE 4134 || VLSI-I Laboratory

 Page 74 of 100

18. Now, we have to place pins. The gate is in ‘poly (drw)’ layer. Let’s bring it to ‘Metal1(drw)’

layer by extending the ‘Poly (drw)’ layer, creating a contact between ‘Poly’ and ‘Metal1’ layer

by pressing ‘o’ to ‘create via’ and selecting ‘M1_POv’ under ‘via definition’ and placing it on

layout.

19. Also draw a ‘Metal1 (drw)’ rectangle on the via, because the default Metal1 rectangle area

is less than the required minimum.

 EEE 4134 || VLSI-I Laboratory

 Page 75 of 100

20. Now, Execute Create Pin to create pins for vdd!, gnd!, in and out.

For in, vdd! and gnd! select ‘input’ as ‘I/O type’ and for out select ‘output’ as ‘I/O type’. Now,

draw rectangles on the Poly-Metal1 via for ‘in’ pin, PMOS source-to-body ‘Metal1’ connection

for ‘vdd!’ pin and NMOS source-to-body connection for ‘gnd!’ pin. For ‘out’ pin, draw the

rectangle on the Metal1 layer connecting the two drains of MOS’s.

You may add label to pins.

 EEE 4134 || VLSI-I Laboratory

 Page 76 of 100

Your Layout will look like this.

 EEE 4134 || VLSI-I Laboratory

 Page 77 of 100

21. Finally, add Metal2 paths of 0.5 width for power rails and connect them to power nets in

Metal1 by using Metal1 to Metal2 via by invoking ‘create via’.

The final layout will look like the following:

 EEE 4134 || VLSI-I Laboratory

 Page 78 of 100

Creating Body ties

Now you know what body tie is. We will now make two instances for body ties one for Psub

and one for Nwell.

1. Execute File New Cellview and fill in the New File form as follows. Click OK.

2. Draw psubstrate contact in the same way as you have made it in Lab3.

 EEE 4134 || VLSI-I Laboratory

 Page 79 of 100

3. Save it and make nwell contact similarly (name it M1_NWELL), just change the Pimp layer to

Nimp and everything else is the same.

Save these two for later use.

Appendix A (Shortcut keys for Cadence Virtuoso ® Layout Editor L)

Shortcut Key Tasks performed

f Fit display to window

r Draw rectangle

q Edit property of an object

p Makes a min width path of the layer

selected in LSW

Ctrl+a Select all

Ctrl+d Deselect all

c Copy

m Move

s Stretch side of a rectangle

k Invoke ruler tool

Shift+k Delete all rulers

i Add an instance

u Undo

Shift+u Redo

e Display options

o Add via between layers

l Create a label

Appendix B (gpdk090 Design Rules Guide (Abridged Version for VLSI-I Lab))

Terminology Definitions

Spacing - distance from the outside of the edge of a shape to the outside of theedge of another

shape.

 EEE 4134 || VLSI-I Laboratory

 Page 80 of 100

Enclosure - distance from the inside of the edge of a shape to the outside of theedge of another

shape.

Overlap - distance from the inside of the edge of a shape to the inside of the edgeof another

shape.

Butting - outside of the edge of a shape touching the outside of the edge of anothershape.

 EEE 4134 || VLSI-I Laboratory

 Page 81 of 100

Lab-8: Post Layout Verification

Objectives:

● To perform Design rules check (DRC), Layout vs. Schematic check (LVS) of inverter
 layout

● To extract parasitic resistance and capacitance from layout of designed inverter
● To perform transient simulation of extracted view
● To create layout views for body ties of NMOS and PMOS for further use

Design Rule Check (DRC)

1. Now we would like to check the DRC rules by Pegasus. Execute Pegasus DRC

The following DRC Run Submission Form will appear. In the Run Data section, put dot(.) in the Run

Directory and Run Pegasus in Single CPU and on Local host as shown below.

 EEE 4134 || VLSI-I Laboratory

 Page 82 of 100

2.Now in the Rules section select the Technology mapping file, Technology and Rule Set as

shown below.

4. In the Input section select your Library, Cell, and View. Also, select Convert Pin to Geometry.

Then click Apply.

 EEE 4134 || VLSI-I Laboratory

 Page 83 of 100

5. Click Yes if the following window appears.

6.The following Results Viewer will appear. The DRC Summary will be empty if there is no

error.

 EEE 4134 || VLSI-I Laboratory

 Page 84 of 100

Layout Versus Schematic

1. Execute Pegasus → LVS

2. The following LVS Run Submission Form will appear. In the Run Data section put dot (.) in

the Run Directory and Run Pegasus in Single CPU and on Local host as shown below.

3. Now in the Rules section select the Technology mapping file, Technology and Rule Set as

shown below.

 EEE 4134 || VLSI-I Laboratory

 Page 85 of 100

4. In the Input section select your Library, Cell, and View. Also, select Convert Pin to

Geometry+Text.

5. Now in the LVS Options section, go to the Extract Options tab write the Net Names as

shown below and select the global or ports option and Flat extraction run as shown below.

Then click Apply.

 EEE 4134 || VLSI-I Laboratory

 Page 86 of 100

6. Click Yes if the following window appears.

7. If the layout matches with schematic the following window will appear.

 EEE 4134 || VLSI-I Laboratory

 Page 87 of 100

Lab-9: Schematic Driven Layout Design

Objectives:

● To be familiar with schematic-driven layout with the example of a 2-input NAND gate.

● To perform Schematic Level Verification, Layout Design, DRC and LVS check and

 perform post-layout simulation from extracted view.

Creating Layout using Virtuoso Layout Editor XL

1. Virtuoso Layout Editor XL is a schematic-driven layout generation tool. To learn schematic

driven layout, we will create the schematic view of a 2-input NAND gate cell which we named

NAND2X1.

2. Instantiate the following cells to your schematic.

Library Name Cell Name Properties/Comment

gpdk090 nmos1v For NM0 and NM1, Width = 240n

gpdk090 pmos1v For PM0 and PM1, Width = 480n

analogLib vdd

analogLib gnd

Use your experience from Lab1 to draw the schematic diagram of the nand gate.

 EEE 4134 || VLSI-I Laboratory

 Page 88 of 100

3. Launch ADE L and simulate the design to verify its functionality. Setup Model library,

Analysis type and Outputs to be plotted as you have done in previous lab.

While setting inputs for signals A and B, you have to use different periods and delays for the

two signals, so that you can observe all four cases (00, 01, 10, 11) of input signals. Also make

sure 0→1 and/or 1→0 transitions for both input signals do not occur at the same time. The

following figure shows a sample of two signals meeting these criteria:

Voltage (A)

Period (A)

Time

0 1 0 1

Delay

Time(A)

Voltage (B)

Period (B)

0 0 1 1
Delay

Time(B)

A sample waveform window would look like the following after simulation:

 EEE 4134 || VLSI-I Laboratory

 Page 89 of 100

4. Then create a symbol in the same way you have made symbol of inverter in lab2. Make it

look like a nand gate.

5. In schematic editor window, execute: Launch→Layout XL. The following window will appear:

6. Click OK. ‘New File’ window for layout will appear. Click OK.

 EEE 4134 || VLSI-I Laboratory

 Page 90 of 100

‘Virtuoso Layout Editor XL’ window will appear.

7. Execute Connectivity→ Generate All From Source. The following pop-up window will appear:

 EEE 4134 || VLSI-I Laboratory

 Page 91 of 100

8. Go to I/O pins tab. The dialog box shows that all I/O pins are in Metal1 layer (Metal1 drw).

Also put a tick mark on Create label as Label and click on Options. The following Set Pin Label

window will appear. Set Height to 0.1. Then click OK on both the windows.

 EEE 4134 || VLSI-I Laboratory

 Page 92 of 100

9. The initial pin and transistor placement in layout will look like the following:

 EEE 4134 || VLSI-I Laboratory

 Page 93 of 100

10. Execute Options→Display or Press ‘e’ on keyboard to open ‘Display Options’. Fill it in as

shown:

11. The transistors and pins are shown inside a bounding box, which is an estimate of the

optimum size of the final layout. Automatic router will use the bounding box to constrain all

routing to occur within the box. The bounding box may need to be re-sized to accommodate all

components. An important concept to keep in mind during resizing is that standard cells

typically have fixed height (so that power/ground rails line up correctly for routing purposes).

Delete the PR Boundary for now.

Virtuoso Layout Editor XL (VXL) and gpdk090 allow us to create stacked transistors with shared

source/drain areas. Zoom in to two transistors at the bottom (to zoom in, type “z” and draw a

box around the transistors). Click on the transistor on the right and type “m” to move the

 EEE 4134 || VLSI-I Laboratory

 Page 94 of 100

object. As you start dragging the object to the left, fly-lines indicating connectivity will appear

as shown below:

12. When the source/drain areas are overlapped, left-click to fix the position. You should see a

transistor stack with shared source/drain areas like this (depending on how far you move, you

may need to move left/right a bit):

 EEE 4134 || VLSI-I Laboratory

 Page 95 of 100

This is a nice NMOS stack for the NAND gate. As you can see, the source/drain contacts have

disappeared. Back to the big picture, zoom to fit (press “F”).

Let’s do the same exercise for the PMOS transistors. The PMOS transistors in nand gate do have

shared drain contacts because they work in parallel. Connectivity information is extracted from

schematic by VXL. The pull-up network looks like the following:

13. Now, connect different layers using path tool (press ‘p’ on keyboard), and fill areas by

drawing rectangles where necessary (press ‘r’ on keyboard). To connect one layer to another

(e.g. Poly to Metal1 or Metal1 to Metal2), create via by pressing ‘o’ on keyboard and selecting

proper ‘Via Defintion’.

14. Instantiate M1_PSUB and M1_NWELL cells (that you have created earlier) by pressing ‘i' on

keyboard and selecting the layout view from library browser.

 EEE 4134 || VLSI-I Laboratory

 Page 96 of 100

15. Wire up the layout. When you do so, you may encounter multiple options for certain pins.

For example, when you select the PMOS to connect its source to VDD, there are multiple

Metal1 wires in the PMOS. The desired path will be highlighted and you’ll see the fly-line.

Continue until you finish routing all the signals. Move vdd! and gnd! pins to the power rails. As

you are moving the pins around, notice the fly-lines that indicate the connections.

A practice that you can follow while wiring is to use Metal1 for all vertical wiring and Metal2 for

all horizontal wiring inside the cell. Also make the cell height 5 m.

16. Your final layout will look something like the following:

17. Perform DRC, LVS and QRC for NAND2X1 as you have done in previous labs. Generate

av_extracted view and simulate the circuit from that view to verify the functionality.

 EEE 4134 || VLSI-I Laboratory

 Page 97 of 100

Lab-10: Introduction to Hierarchical Layout Design

Objectives:

● To be familiar with concept of hierarchical design

● To perform Schematic Level Verification, Layout Design, DRC and LVS check

● To perform post-layout simulation of top level design

Introduction to Hierarchical Design

By this time, you should have completed layout of INVX1 and NAND2X1. Now, you will learn

how to perform hierarchical design. (cell INVX1 in this section is inverter in your case)

1. Create a new cellview of type schematic named AND.

2. Instantiate NAND and INVERTER symbol from your library mylib in that schematic.

Your final schematic should look something like the following:

3. Now make a symbol of AND.

 EEE 4134 || VLSI-I Laboratory

 Page 98 of 100

4. Now create a new cellview named AND_test, instantiate AND and vdd in that cell and the

final schematic should look like the following:

5. Now, launch ADE L, setup Stimuli, Model library, Analysis type and Outputs to be plotted in

the same way as you have done in Lab 5. Run the simulation.

 EEE 4134 || VLSI-I Laboratory

 Page 99 of 100

6. If functional verification is okay, then execute Launch→Layout XL from the schematic of

AND2X1.

7. Follow procedure of Lab 5 to generate instances and set display options. You will get

something like the following:

8. Connect them as required and the final layout should look like the following (probably

better!)

9. Perform DRC, LVS and QRC as you have done in previous labs.

 EEE 4134 || VLSI-I Laboratory

 Page 100 of 100

References and Acknowledgment
The following resources have been consulted while preparing the manual.

▪ “Fundamentals of Digital Logic with Verilog Design” by Stephen Brown and Zvonko

Vranesic

▪ “CMOS VLSI Design: A Circuits and Systems Perspective” by Neil Weste, David Harris.

▪ “Physical Design Essentials: An ASIC Design Implementation Perspective” by Khosrow

Golshan.

▪ “Digital VLSI Chip Design with Cadence and Synopsys CAD tools” by Erik Brunvand.

▪ “Custom IC Design Manual” provided by University Support Team, Cadence® Design

Systems, Bangalore, India

Prepared by:

Mr. Adnan Amin Siddiquee

Lecturer, Dept. of EEE, AUST

Editorial Committee:

Dr. Monzurul Islam Dewan, Assistant Professor, Dept. of EEE, AUST

Ms. Oli Lowna Baroi, Assistant Professor, Dept. of EEE, AUST

Mr. Md. Shanian Moed, Lecturer, Dept. of EEE, AUST

Special Thanks to:

Dr. Satyendra Nath Biswas, Professor, Dept. of EEE, AUST

Mr. S. M. Ishraqul Huq, Assistant Professor, Dept. of EEE, AUST

Mr. Anupam Golder, Lecturer, Dept. of EEE, AUST

Published on: Spring 2025 Session

